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INTRODUCTION 

Statement of the Problem 

This thesis describes the optimization of a combined inertial-celes-

tial navigation system. Throughout the thesis the following assumptions 

will be made: (l) that it is desired to minimize the mean square position 

error, (2) that the system is linear and perturbed by additive noise, (3) 

that the system is a locally level system, and (4) that the system operates 

at low velocities at a known distance from the center of the earth. Since 

the general solution to this problem is quite difficult several simpler 

versions of the problem will be analyzed. These may be solved by reason­

ably well-known techniques and the results are useful both from an intui­

tive standpoint and as practically useful methods of nearly optimizing a 

system. The three cases to be analyzed are: an inertial system with one 

channel, combined with a celestial body tracker; a two-channel system op­

erating with a tracker with negligible platform tilt; and the more general 

case of a system with a tracker where platform inclination is not neglig­

ible. In all cases the results are applicable to a damped inertial system 

as well as a pure inertial system. The last-mentioned case is the most 

difficult to optimize. Before proceeding with the analysis it will be de­

sirable to outline the basic principles involved in inertial and celestial 

navigation. 

Inertial Navigation 

Basic concepts 

An inertial navigation system is one which measures its own 
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acceleration and thus calculates its own position in space. It has three 

essential components, a vector accelerometer, a stable platform, and a 

computer. The vector accelerometer is an instrument "which measures ac­

celeration in space. It does this by measuring the force on a test mass. 

If the mass is known, the total acceleration of the vehicle may be cal­

culated using Newton*s laws. The stable platform carries the vector ac­

celerometer in a known attitude in space so that acceleration relative to 

known spatial coordinates. The computer calculates vehicle acceleration 

from the acceleration sensed by the accelerometer by adding the value of 

gravity, which is computed on the basis of the estimated position of the 

system. It supplies the torquing signals needed to keep the stable plat­

form in the desired attitude in space. It integrates vehicle acceleration 

to obtain the system's velocity and position. 

The accelerometer measures the force on a test mass. Thus, it senses 

vehicle acceleration plus gravity. If A is the thrust acceleration gF , 

£ the gravity vector, and B the vehicle position vector, then R « £ + A. 

£ is a function of position and thus must be calculated using position 

information from the system. In inertial navigation systems in general, 

this is a crucial problem. However, in locally level systems, gravity is 

nearly constant relative to the platform axes and thus this computation is 

not a major source of error. The gravity feedback in the locally level 

system is basically a function of platform inclination. 

The stable platform is kept in a known orientation by gyroscopes. A 

gyroscope is a rotating mass with a known angular momentum. If the 
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gyroscope is left undisturbed its angular momentum will remain constant 

and thus its axis of rotation will maintain a fixed attitude in space. A 

torque applied about an axis perpendicular to the axis of rotation of the 

gyro will cause precession, or rotation of the axis of rotation. Pre­

cession is described by the equation T = H x », where T is the external 

torque applied to the gyro, to is the precession angular velocity of the 

gyro, and H is the angular momentum. In many cases, including the local­

ly level system discussed here, it is desired to rotate the platform with 

respect to inertial space. This is done by applying known torques to the 

gyro. The torque to be applied is a function of the velocity and the 

position of the system. 

The computer performs the integration of vehicle acceleration, the 

computation of the gravity vector, and the computation of the gyro 

torquing signals. For the purposes of this thesis it will be considered 

to be errorless. 

It might be suspected from this discussion that errors in the in­

struments of an inertial system would tend to cause ever-increasing posi- . 

tion errors. For this reason it is desirable, especially in cruise 

systems, to compare the position determined by the inertial system with 

some other position reference. 

Locally level systems 

A locally level system is one which is designed so that the platform 

is kept level at the computed position of the system. Consequently, the 

desired angular velocity of the platform is a function of the position of 

the system. This angular velocity is a» = œ + ® where ® is the angular 
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velocity required for the platform to remain locally level, and » is the 

angular velocity of the earth. The coordinate system used in this thesis 

is shown in Figure 1. In terms of this coordinate system the '«ngni ve­

locity œ is 
—s 

In a locally level system, the z-axis of the accelerometer is usually not 

mechanized, since this information is available otherwise in surface 

systems. A "block diagram of a locally level system is shown in Figure 2. 

Error analysis 

As has "been implied "before, the errors in inertial navigation systems 

tend to propagate throughout the system and to increase with time. The 

instruments used in inertial navigation are imperfect, and the degree of 

accuracy demanded of the systems demands that the instruments be operated 

to the limits of their performance. Consequently, careful error analyses 

are very important in the design of an inertial navigation system. The 

errors in inertial navigation systems are of two basic types, instrument 

errors and alignment errors. Instrument errors arise from mechanical de­

fects in the instruments and alignment errors are a result either of im­

proper initial alignment of the system or of subsequent misalignment. 

There are two major types of alignment error in the locally level 

system. One arises from platform tilt appearing in the output of the ac­

celerometer and the other arises from velocity error being fed back via 

the torquing signals into the gyro. Since the gyro angular velocity is a 

function of the velocity of the system, if an error exists in the 
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FIGURE I. LOCALLY LEVEL COORDINATE SYSTEM 
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Figure 2. Locally level system block diagram. 
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velocity determined "by the system, then the error will appear in the gyro 

torquing signal and thus in the platform tilt. This effect may he shown 

by considering the gyro angular velocity m. The desired angular velocity 

is 

o ' o 

and the actual angular velocity is 

o o 

The difference is 

where ̂  is the platform tilt angle vector, and e_ is the gyro bias. If the 

accelerometer is tilted through the angle 0 from the vertical, its output 

isA-Ax^+ôa where 6a is the accelerometer error. The difference be­

tween the accelerometer output and the actual thrust acceleration A is 

then given by 

ÉS + 4: CaA - + if - aA] 

assuming the output along the z axis of the accelerometer is disregarded. 

If the higher order products are neglected as being small, then the ac­

celerometer error output is 

AË = C6ax - g0y] + ly [6ay + gjÇ . 

The error outputs of each accelerometer are then L x = 6a - g0 for the 
~ x y 
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x-axis accelerometer, and Ay = 6a^ + g^ for the y-axis accelerometer. The 

error output equations for the gyros are = ~ jF + ex ^ = ~ + e^. 

These error output relations for the instruments may now he combined 

to produce the error model for the locally level system shown in Figure 3. 

Damped inertial systems 

If the pure inertial system discussed previously is modified by 

adding an independent velocity measuring device whose output is fed back 

into the accelerometer, a damped inertial system results. The block dia­

gram for the damped inertial system is shown in Figure 4. The output of 

the velocity meter is B + 6v where ôv is the instrument error of the ve­

locity meter. The difference between the output of the velocity meter 
• • • 

and the system velocity R + AR is then 6v - AR. The error model for the 

damped inertial system can then be set as shown in Figure 5. 

Error transfer functions and error propagation 

Starting from the error models of Figures 3 and 5, the error transfer 

functions shown in Table 1 can be derived. If the velocity meter constant 

k is set to zero in the damped system, the undamped inertial system trans­

fer functions are obtained directly. If a constant error is input at each 

of the error inputs 6a^, 6v^, and e^, the output errors shown in Table 2 

are obtained. A new output error W is defined here as f - — . The ' 7 y R
0 

only error input which causes an unbounded position error is e^, It may 

be seen that the error inputs from the accelerometer and the velocity 

meter can be lumped into one error input 6a^ + k6v^. The error model for 

the damped inertial system can be modified to take the form shown in 
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Figure 3- Pure inertial system error block diagram. 
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Figure 4. Damped inert ial system block diagram. 
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Table 1. Error transfer functions for a damped inertial system 

Error output 

6ax 

Error input 

6TX ey 

Ro -<*0 
RQS(S + kj + g RQS(S + k) + g SLRQS(S + k) + g] 

K 
1 k 

Ro(s + k) 

K Ros(s + k) + g RQS(S + k) + g RQS(S + k) + g 

Cy 0 0 
1 
s 

Figure 6. This form will prove to be extremely useful in the analysis to 

follow. The substitutions o»Q = J = , and œ = 1 

have been made in computing Table 2. 

Relative seriousness of errors 

It may be seen from Tables 1 and 2 that the only input error which 

causes an unbounded error is the gyro bias. For this reason, in cruise 

systems, the most critical components are the gyros. It is obviously very 

desirable to have some method of correcting this error. This is the 

purpose of combined inert ial-celestial systems such as those discussed in 

this thesis. If a celestial body tracker is installed on a stable plat­

form it measures the system error ty. The use of this information to 

correct the effects of gyro bias would eliminate the errors which would 

increase in an unbounded fashion. 
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Table 2. Time domain form of error outputs for constant error Inputs 

Error 
output 

Error input Time domain form 

6a__-Hc6v -?» t J I ! 
[l-e (cos» t + —rsin » t)] 8a + kôv 

X X 
X X 

00 » 

6a + kôv 
x x 

-ge 

2 » 
O L 

-f» t 
-Kt. 

t 1— sin» t-—-[l-e ° (cos» t 
» o 

~t sin» t)] 
» J 

k 6a + kôv 
x x 

6a +kôv -f» t 
g [l-e (cos» t + —r s in» t)] 

H». » 

>c -î » t 
e t— s in» t + ~ [l-e ' 0 (cos» t 

» » 

+ —7 s in» t)] 
» 

Y 

Celestial Navigation 

Celestial navigation is the process of navigation by making and in­

terpreting observations on the positions of celestial bodies. In many 

cases, including both this system and the case of marine navigation with 
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Figure 5. Error block diagram of one channel 
of a damped inertia) system 
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Figure 6. Simplified error block diagram for one 

channel of a damped inertial system 
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the sextant, the only useful observation is the altitude of the body in 

question. This observation establishes a circle of position on the 

earth's surface. To obtain a position fix, two observations are required. 

These may be obtained from the same body at two different times, or from 

two different bodies. This thesis will treat the case of repeated obser­

vations on the same body. 

If a celestial body tracker is mounted on a stable platform, the ob­

servation may be used to sense the component of the difference between 

platform tilt and position error which is normal to the line of sight. 

This is shown in Figure 7. Figure 7 shows i cut taken through the center 

of the earth and including the observer and the line of sight to the ce­

lestial body. Providing the platform tilt is small the tracker output is 

cos z(t) -sin z(t) + n(t), where n(t) is the additive tracker noise 

and z(t) is the azimuth of the celestial body. Throughout this thesis it 

has been assumed that only the altitude information is to be used. The 

reason for doing this is that the azimuth information must be used to 

correct the platform misalignment about the z axis, which is quite large 

with respect to the platform tilt about the x and y axes. This informa­

tion may then be used to correct the position information provided by the 

inertial system. If the tracker were a perfect instrument there would be 

fewer problems associated with this correction. However, there are sev­

eral sources of error in this measurement. Atmospheric refraction is a 

major problem with either optical or radiometric trackers. If an optical 

tracker is used weather becomes a factor. If a radiometric tracker is 

used resolution troubles will be encountered with either the antenna or 
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the random. In any case the problem of optimizing the use of the tracker 

data is not a trivial one. 

Review of the Literature 

The topic of this investigation was suggested by work done on a sys­

tem for the Collins Radio Company by R. G. Brown\ Ko optimization of 

note was done in this work. Optimization of stellar inertial systems has 

been done in several different cases, and a brief discussion is contained 

in Pitman (5). The optimization of velocity-inertial systems has been dis­

cussed by Porter and KSazda (6). However, their work makes no mention 

either of celestial systems or of non-time-stationary cases. An earlier 

paper by Johnson (3) discusses the systhesis of various inertial system 

configurations. Any search of the literature in this field is complicated 

by the fact that inertial navigation systems have been used almost exclu­

sively in military applications. For this reason the bulk of the work 

done in this field is not available to the general public. The most use­

ful work from a general information standpoint has been Pitman (5), 

which is an excellent source of information on the workings of inertial 

navigation systems. Mast of the material in this chapter on the funda­

mentals of inertial navigation has been adapted from this source. The 

works of Laning and Bat tin (4) and Chang (2) have been very helpful in 

dealing with non-time stationary filtering and optimization techniques. 

^Brown, R. G., Ames, Iowa. Proposal for an Integrated Radiometric-
inertial Autonavigator. Private Communication. 1962. 
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THE ONE-CHAMEL INERTIAL-CELESTR1AL SYSTEM 

Description of the Problem 

In this chapter a system consisting of one channel of an inertial 

system and a tracker with additive noise will be considered. The error 

block diagram of this astern is shown in Figure 8. The tracker output is 

f e (t)dt + n(t) = f? (t) + n(t), 

It may be noted that the tracker output is independent of both the ac­

celerometer error 6a^ and the velocity meter noise ôv^. Consequently, 

the choice of the optimum feedback function g(t,t^) depends only on the 

gyro bias ey once the velocity meter feedback constant k is chosen. This 

means that a much simpler system may be considered. This system appears 

in Figure 9. All further discission will be based on this configuration. 

There are several reasons for choosing to operate on ^ rather than 

as an input. It is not necessary to gather data on the autocorrelation 

function of the derivative of the tracker noise, and the initial condition 

problem can be handled in a more convenient manner. 

Optimization of the One-Channel System 

If the statistical properties of the input ^ and the noise n(t) are 

completely known, Ax^, the component of position error due to gyro bias is 

'"t 

Axà =J n(tl)f(t-t1)dt1 - g(t,tj[(/ (t^) + n(t^)]dt^ 

This equation is valid for the case where ^.(t) has deterministic and 
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random components with completely known statistical properties. The case 

where the signals consist of random components and deterministic compo­

nents of unspecified magnitude will he discussed in a subsequent section. 

The position error Ax may be minimized by choosing the appropriate 

weighting function g(t,t^). The procedure for finding this optimum weight­

ing function is due to Boo ton (l). It is covered in some detail in the 

appendix. The integral equation for this optimum weighting function is 

't rt 

Yii(tl>t2)g(t>ti)dti ~j Yni(tl,t2)f(t~tl)atl (Xt2<t 

J o 

where the correlation functions Y.^t^tg) and y^(t^,tg) are defined by 

+̂
y(ti)3Cn(ta) +( ŷ(tg)l) 

This integral equation must be solved for each value of time t. No gen­

eral solution for this type of integral equation is known. Consequently, 

deriving either a solution or a lower bound for the error is extremely 

difficult. 

By making some assumptions as to the nature of the signal^.(t) the 

integral equation for the optimum weighting function may be put in a some­

what more intelligible form. These assumptions are: (l) n(t) is time 

stationary and has the autocorrelation function Ae , (2) is the -

sum of a constant e , and a random component e with an autocorrelation 

-\H y 71 

function A^e ^ , and (3) the noise, the random component of the gyro 
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bias and. the constant portion of the gyro bias are all uneorrelated. The 

function ^(t) is 

^y(t) =y 6yr(t)at + +(y(to) 

A 

•where tQ is the time tracking ceased on the previous day and ^(tQ) is 

thus the value of this error at t . 
o 

The autocorrelation function of J e (t)dt is given by the integral 

% 

V(W = ' V(t3)dt3 ̂  eyr(t4)dt4 

dt dt . 
3 4 

This integral has the value 

, . b t -b t -b t0 b ft., —1_| 

r IVW) + \Iv̂ l -1 +=y y *= y 2:-=yl 1 2|]. 

The autocorrelation function for ^Ç(t) is given below 

*^0^ (vv2^+(va
y) 

+ +ey0[e yl+e y 2]-e y' 1 . 

The assumption has been made here that some "best value" of position has 

been set into the system before it reverts to the damped inertial mode 
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at the end of the previous day's tracking. 

The integral equation for the optimum weighting function has the form 

rt -b (t -t | 
([ / (t2)) 4-Ae 1 

g(t-t^)dt^ , 0<t <t 

The "Errorless" Filtering Case 

A slightly different approach may he taken to this optimization. 

This is the so-called "errorless" filtering method. Basically, the opti­

mum filter desired is one which is errorless for the deterministic sig­

nals in the absence of noise and which has minimum mean square error when 

the random signals and noise are present. This method is described by 

Laning and Bat tin (4) and is covered in the appendix. If it is desired 

that this system be errorless in the absence of e^, ̂ .(tQ), and n(t), 

i.e., with €y^ as the only input, the constraining equation is 

g(t,t^)[t^ - tg]dt^ = 0 . 

o 

The position error Ax gis expressed as before. The optimum weighting func­

tion is the one which minimizes the mean square position error subject to 

the constraining equation. If the terms relating to e , are removed from 
yx 

jJ the integral equation shown below results. 
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ft 

J Kfy^S) + Yrr(tl't2) + Ae"b|tl_t2| 

' ' A C-HV^I f(t-t1)dt1 0 < tg < t 

Because the optimum weighting function gives zero position error for a 

constant gyro bias it also satisfies this equation. If g^(t,t^) is de­

fined as the solution to this equation and g^(t,t^) is defined by 

J c(fy2(t0)) + + Ae ' 1 2']at1= t2-to 

J o 

then g(t,t^) is defined as gQ(t,t1) + X(t)g^(t,t^) where X(t) is a 

Lagrangian multiplier, the optimum weighting function is found by find­

ing gQ and g^ and then substituting the resulting g(t,t^) into the con­

straining equation to find X(t). 

Probably the only analytically solvable case associated with this 

problem results from a further simplification. If and jft (tQ) are 

neglected, the integral equations for the errorless problem take the 

forms 

t ~'bIti"t2 ft "bl 
g^t,^) Ae dti=/ Ae f(t-t1)dt1 cxt2<t 

1 -bit -t , 
g1(t,t1) Ae ' ^'dti = t2 - to 0Ct2<t 

These equations are of the general form 
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b 

U(tx) 0(t - t)dr = f(t) . 

'a 

This equation is the integral equation for the time independent case with 

a finite observation time. When 0(T) has a Laplace transform which is a 

2 
ratio of polynomials in s this equation has an exact solution. This 

exact solution is described by Laning and Battin ( 4). The exact solution 

for these particular equations is. relatively simple. The function gQ is 

f(t - t^) by inspection. The function g^ has an analytical form which is 

given by Chang (2), for the equation 

-D | "C^-"Cn 
g(t + t1)dt1 = f(t2) Ae"br^ 

In the neighborhood of zero it is given by 

g(t,t^) = -—g- (p + b) [U(t - tx)(p + b)f(t^)] 

These two solutions are equal in the interior of the interval. The com­

plete solution for this case is 

61(^*1) = gib EMt-t^t^) + (l+b)(t-to)6(t1)-(l+bto)Ô(t-t1)] 

The constraint equation is 

't Zt 

(tl-t0)f(t-ti)dti + X(t)j (t1-to)g1(t,t1)dt1 = 0 

o 

and the Lagrangian multiplier can be determined using this equation by 
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t 

(tl-to)f(t-ti)cLti 

X(t) = 

(tl-t0)gi(t»ti)dti 

The optimum weighting function g(t,t^) is then 

g(t,t^) = f(t-t^) + x(t)g1(t,t1) 

The weighting function g^(t,t^) is sketched in Figure 10, The delta func­

tions at the end of the observation interval can be interpreted as dis­

crete observations taken at each end of the observation interval and then 

added to a weighted average of the remaining data. This is also the sort 

of weighting function which can be used reasonably easily in a computer 

mechanization of the system. 



www.manaraa.com

25 

Figure 10. Sample weighting function g(t,t>) 
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THE OPTIMIZATION OF A TWO-CHANNEL SYSTEM 

Description of the Problem 

This chapter treats a two-channel inertial navigation system aided by 

a tracker which tracks one celestial body. The tracker output is thus re-

to the direction of the body being tracked. If the azimuth of the body, 

z(t), remained constant it would never be possible to determine what portion 

of the filtered error came from each channel. Fortunately, the azimuth of 

a celestial body changes as the earth rotates. As a result it is possible 

to filter the output of the tracker to obtain an approximation to the er­

rors Ax^ and Ay^. The block diagram of the system to be considered is 

shown in Figure 11. As in the one-channel system, the only error input 

which appears in the tracker output is the gyro bias error. Consequently, 

the simplified block diagram of Figure 12 will be used in the subsequent 

analysis. A further simplification which can be made in many cases is 

that the platform tilt is very small, and thus the problem is reduced to 

minimizing the outputs Ax^ and Ay^. The simplified block diagram for 

this case is shown in Figure 13. 

lated to the errors Ax, and Ay 

Analysis of the System with Negligible Platform Tilt 

If the block diagram of Figure 13 is used as a starting point, the 

output errors Ax^ and Ay^ can be expressed as follows. 
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/t , Xt 

+ / /x1(t1)sin z(t1)g1(t,t1)dt1 - j n(t1)g1(t,t1)dt1 

Jo J o 

Ayd = *1^ " I z(t1)g2(t,t1)dt1 

t 

+ 

o 

/ 
fySXt)cos z(t1)82(t,t1)cLt1 - ( nCt^ggCtj^at^ 

From these relationships it is possible to derive the integral equations 

for the optimum weighting functions. If s(t), the output of the tracker, 

is defined by 

s(t) =f\y^t) cos z(t) -j^x^(t) sin z(t) + n(t) 
and the correlation functions are defined as 

=(s(Ys(tg))> 

V(t't2) = V) 

v(t'V " (!l'xi<tMt2>/> 

then the integral equations for the optimum weighting functions g^ and g^ 

are 
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\s(t,tg) 'J Vg.CVV^t'h.)41! 0 < t2 < t 

= Yss(tl't2)82<t'tl)atl 

As in the preceding chapter these equations must he solved for each value 

of time t. This is true here even for the case of stationary noise. 

Probably the most reasonable assumption as to the nature of the gyro bias 

is that the x and y gyro biases are independent constants. If this 

assumption is made, then j^y^ and ^x^ have the form 

fyi(t) = ey(t-to) + Axd(to). 

f  %i(t) = =x(t-t0) + Ayd(t0) 

where tQ is the time tracking ceased the previous day. In this case the 

correlation functions reduce to the forms shown below. 

Yss^l'V C0S =(\)cos z(t2) 

+ *1^2^ siD z(\)sin z(t2) 

Vys(t, tg) =^fy1(t)^y1(t2)/)cos z(t2) 

Yxs(t, t2) = (^(t) ̂,.(t2)) sin z(t2) 

Here, the noise and the gyro bias are assumed to be independent. 

The integral equations shown above are valid only when the statisti­

cal behavior of the noise and the error inputs are completely known. For 
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Figure 11. Two-channel inertia! system with tracker 
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some cases this is not a reasonable assumption. In this case the "error­

less" filtering technique discussed in the previous chapter may be used. 

In this case, with the same assumptions as to the nature of the inputs as 

were made before, the desired weighting functions are the ones which are 

errorless for constant gyro biases and zero position error at the end of 

the previous day's tracking. Then the error with noise and error at the 

end of the previous day is to be made a minimum. This gives two con­

straining equations on each weighting function. These equations are 

t 

(iy-t^sin z(t1)g2(t,t1)dt1 = t - tQ 

The equations for the TniniTmim weighting functions are 

ft 

Yys(t,t2) -J o Yss t̂l,t2 6̂l t̂,tl d̂tl 0 < tg < t ss 1' 2y6l 
o 

subject to the equations of constraint above. 
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n(t) 

Figure 12. Simplified block diagram 
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These equations are solved using the method of Lagrangian multipliers. 

A discussion of this method may be found in Chang (2). The optimum 

weighting functions g^(t,t^) and g^ are assumed to be of the form 

= g^t,^) + x11(t)g11(t,t1) + x12(t)g12(t,t1) 

- gg^t,t^) + xpi(t) gp-,(t,t^) + ̂ p^(t)gpp (t,t^) 

vhere g^g(t,t^), g^(t,t^) and are the solutions of the integral 

equations shown below and X^ and X 2̂ are Lagrangian multipliers. 

Y
ss(tl't2)810(t'tl)dtl = \s(t'V 

o 

t 

Yss(tl't2) Su^'V41! = (Vo 0̂5 z(t2> 

V4tl = \s(t't2' 

^sCWM^^^^l = (t2-tQ)sin z(t2) 

Once the solutions for these integral equations are found, the weighting 

function formed from them can be substituted back into the constraining 

equations to find the Lagrangian multipliers and thus the desired 

weighting function. If, as in the preceding chapter, it is assumed that 

the random component of the gyro bias is zero, the error *V (t ) is neglig-

4t/ f o ible, and the noise has the autocorrelation function Ae "I 'I , then the 
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integral equations for the partial weighting functions are as shown below. 

-bk-tJ -bit -tJ 
0 = g10(t,t1)Ae 12 ^ dt1 = j g20(t,t1)Ae I 2 ^ dt^ 

(t2-t0)c°s z(t2) =7 Ae lg^(t,t^)dt^ 

o 

t -bit -t I 
(^2~to)sin z(tg) = I Ae "4 g^t^d^ 

gll g22 g21 g12 

g10 8X14 g20 are zero by inspection, g^, g^, g21, and g^ may be ob­

tained by the same methods used previously. These functions do not need 

to be calculated for each value of time. However, they are different for 

each function z(t). Once these functions are found, they must be substi­

tuted back into the constraining equations to find the Lagrangian multi­

pliers. This substitution will give two sets of equations in the multi­

pliers. These are shown below. 

In = (t1-to)g11(t,t1)cos z(t^)dt^ 

o 

I22 = I (Vto,g12(t'tl,8ln z(t1)dt1 
o 

X12 = I (VV^'V005 zCti)dti 
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%2l = I (Vt^t^sin z(ti)atl 

t-to = Xll(t̂ Ill + X12I12 

0 ~ X11I21 + X12I22 

t-to X21I22 + X22I21 

0 ~ X21I11 + X22I12 

It may be seen that even for this simplified case the solution of the 

optimization equations is very difficult. 

The System with Appreciable Platform Tilt 

The block diagram for the system with non-negligible platform tilt 

appears in Figure 12. The position errors Ay^ and Ay^ for this system 

are 

Axd = 

t 

' o 

Pyl t̂l)f̂ t"tl d̂tl " / ^r^Mcos z(t1)g1(t,t1)dt1 

/̂ x1(t1)sin z(t1)g1(t,t1)dt1 - / n(t1)g1(t,t1)dt1 
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Figure 13- System with negligible platform tiit 
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Aya = "y ^x1(t1)f(t-t1)dt1 +J ^x^(t^)sin z(t1)g1(t,t1)dt1 

t , Zt 

\ yx(t)cos z(t^)g^(t,t^)at^ -J n(t1)g1(t,t1)dt1 

In a manner analogous to that used in the preceding section, the integral 

equations for the optimum weighting function are 

/t 

Yss(tl'tS)8l(t'tl)dtl = I f(t-tl>Vys(tVt2)atl 
O Jo 

\ Zt 

y o 

These equations are valid when the statistical "behavior of the inputs and 

noise are completely known. The technique for their solution is very sim­

ilar to that which must be used for the equations of the previous section. 

As was true with the case of negligible platform tilt, these equations 

must be solved for each value of time t. If the "errorless" filtering 

method is used, the equations of constraint become 

't Zt 

(Vt0)cos z(t1)g1(t,t1)dt1 = J f(t-t1)(t1-tQ)dt1 

o s o 

't 

z(t1)g1(t,t1)dt1 = 0 

o 

t 

(t-^t^cos z(t1)g2(t,t1)dt1 = 0 
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a A 
/ (\-to)sin z(t1)g2(t,t1)dt1 = / f(t-t1)(t1-tQ)dt1 

The integral equations for the optimum filters which must be solved sub­

ject to these constrants are the same as those above, with the exception 

that the terms relating to are removed from the correlation func­

tions. If the partial weighting functions are now defined by the inte­

gral equations 

Yss(tl't2)gll(t'tl)dtl = (VV®08 z(t2> 

t 

= (W*1" z(t2> 

gll = g22 g21 = g12 

the optimum weighting functions may again be expressed as 

— X^ogio("t#"tj_) + ̂ ngn (t,t^ ) + X1 pg^ p(t,t^ ) 

~ X20g20^'^l^ * X21g21^'^l^ X22g22 ,̂̂ l^ 

The right sides of the integral equations for the partial weighting 

functions are known functions of t. Except for the equations for the par­

tial weighting functions g1Q and &20> there is no difference between the 

integral equations for this case and the case with negligible platform 

error. The constraining equations are different, however, and thus the 

weighting functions will also be different. If the same assumptions are 
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made about the noise and the gyro bias as were made in the preceding sec­

tion, the weighting functions g1Q and g^ are zero and thus the only 

change to be made in considering the effects of platform tilt is to change 

the constraining equations used when determining the Lagrangian multi­

pliers . This means that the effects of varying the velocity meter con­

stant k are much easier to assess, since they appear only in the 

Lagrangian multipliers. 

Closed-Loop System Configurations 

It may not seem at all obvious that the system configuration shown in 

Figure 14 can ever be reduced to the form used as a general form for the 

optimization. The form shown in Figure 14 uses direct feedback to the gy­

ro bias input; and it has four weighting functions involved instead of 

the two of the system of Figure 13. However, it can be done, and the fact 

that it can be done validates a considerable portion of this analysis. 

Consider the configurations shown in Figure 15. If the closed-loop re­

sponse to a unit impulse u^(t-t^) is known to be g(t,t^) then the integral 

equation 

fx 
5(t-t1) = g(t,tL) + J g(t,tg)q(tg,t^)dtg 

can be used to find the feedback weighting function q(t,t^). Conversely, 

if q is known, the same integral equation can be used to find the closed-

loop response g(t,t^). The significance of this integral equation is that 

if q(t,t^) represents a physically realizable weighting function then 

g(t,t^) does also and vice-versa. Thus it is possible to solve for the 
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closed-loop optimization function and know that this represents the true 

optimization function and that it is not possible to improve matters by-

using a more complicated system configuration. Now consider the config­

uration of Figure 16. This is merely a revision of Figure 14. However, 

it is now much more apparent that this configuration will not accomplish 

any more than the configurations previously studied. The integral e-

quations necessary to describe the feedback transfer functions may be dif­

ficult to solve, but particularly with digital techniques, the mechaniza­

tion using the closed loop weighting functions may be entirely satisfac­

tory. Further, it provides a direct method for computing the mean square 

value of the position error and so may be used as a standard of compari­

son for existing or proposed practical systems. The weighting function 

U(t,t^) of Figure 16(c) is defined by the integral equation 

UQ(t-ti) = m(t,t^) 4 m(t,t1)[g3(t,t2)cos z(tg) 

o 

-gjt,t2)sin z(t2)]dt2 

and the total weighting functions composed of m, g^, and g^, and their 

counterparts m, g2 and g^ are 

for the Ax^ side and the Ay^ side respectively. 
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CONCLUSIONS 

This thesis describes methods of optimizing a combined celestial-

inert ial navigation system using the altitude information from a celestial 

body tracker. The integral equations for the optimum weighting functions 

are derived for several cases. In any case where the noise or the random 

component of the gyro bias is unknown, no closed form solution is known 

for the weighting functions, and in addition the integral equations for 

the weighting functions must be solved for each value of time. This mpans 

that any solution for these cases must be extremely difficult. It has not 

been possible to establish even a tentative error bound for any of these 

cases. When the gyro bias is assumed to be constant, and the noise is 

assumed to have a simple autocorrelation function, then the problem has a 

somewhat simpler solution. In this case, the integral equations for the 

partial weighting functions have an analytical solution in which the time 

appears. These partial weighting functions can then be substituted back 

into the original, equations of constraint in order to determine the com­

plete weighting function. The resulting weighting functions can then be 

used to determine the mean square value of the position error. However, 

for the two-channel system such a calculation would be extremely difficult. 

Two different optimization criteria have been used in deriving the op­

timum weighting functions. Basically, these both result in minimum mean 

square error, but under different assumptions with regard to the nature of 

the inputs. In the first, the statistical behavior of the signal and 

noise are assumed to be completely known. Then the appropriate ensemble 

averages of all the necessary functions can be determined and the equations 
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for the minimization set up. In the second, the system is forced to he 

errorless when the noise and random components are not present. The error 

in the presence of the random components and noise is minimized in the, 

mean square sense "by the choice of the optimum weighting function from a-

mong those satisfying the constraining equations which specify that the 

system is errorless for the deterministic inputs. 

In the practical design of a system, the choice between these methods 

of filtering appears to depend on a rather intimate knowledge of the prop­

erties of the gyros. In general, the most devastating form of gyro error 

would be random components of e and e . Constant drifts would be rela-
y x 

tively easily compensated for, provided the tracker noise is not extremely 

high. The worst situation appears to be the combination of large amounts 

of tracker noise and large amounts of random gyro bias. 

Several simplified approaches appear to be useful for this system. 

One appears to be to assume a simplified form for sin z and cos z and solve 

for these weighting functions. The result would probably be useful in the 

design of a practical system. Another approach, and probably the only one 

which would be of much help if the case of non-stationary noise is to be 

considered is to reduce the integral equations to sets of linear equations 

by assuming a weighting matrix rather than a weighting function of two var­

iables . 

In short, this thesis sets up the equations for the optimum weighting 

functions. It does not attempt to solve them for cases complex enough to 

be of practical interest. 
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APPENDIX A 

The Non-Time-Stationary Optimum Filtering Problem 

The non-time-stationary filtering problem was first solved by Booton 

(l). The modification of this problem which takes into account the prob­

lem of optimum filtering with constraints is discussed by Tuning and 

Battin (4). Basically the problem is the optimum filtering of a signal 

and noise in additive combination so that the error, or difference between 

the output of an optimum filter and the desired signal, is to be made a 

minimum in the mean-square sense. The noise and signal are assumed to be 

random, and the necessary data regarding their statistical behavior is 

assumed to be known. The case considered here is slightly different in 

superficial appearance from the more usual configuration, however it is 

more convenient for the purposes of this thesis. 

Consider the system shown in the block diagram of Figure 17. It is 

desired to find the optimum physically realizable weighting function 

gQ(t,t^) such that the ensemble average of the square of e(t) is to be 

made a minimum. The error can be written 

e(t) = h(t,t1)n(t1)dt1 g(t,t^)s(t,t^)dt^ 

and its mean square value can be written 
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<^e2(t)) = j  J  h(t,t1)h(t,t2)Ynn(t1,t2)dt1dt2 

1 /t 

- 2 1  j  
o Jo 

t /t 
g(t,t1)g(t,t2)vss(t1,t2)dt1dt2 + 

ro / o 

where the correlation functions y , y , and y are given "by 
HH 226 SS 

YS3(TL'T2) ={S(YKTG)) 

Any physically realizable weighting function can be written in the form 

g(t,t1) = gQ(t,t1) + ag^t,^) where g1(t,t^) is a physically realizable 

weighting function whose form depends on gQ, a, and the specified g(t,t^). 

When this substitution is made^e^(t^ can be expressed in the quadratic 

form FQ + aF^ + aS"2 where Fq, F^, and Fg are as shown below. 

*0 "j f h(t>\Wt>VV(Vt2)dtiat2 
•SO Jo 

rt /t 

-2 

zO yo 
/t ft 

+ J  ,  •o jq 

h(t,t1)go(t,t2hns(t1,t2)dt1dt2 

8o(t>V8o(t>t2)V(tl>t2)dtldt2 
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t /1 

H t, t1)61(t, t2)Yns(t1̂  tg)dt^dtg 

go(t'tl)6l(t't2hss(tl't2)âtl4t2 

rt Zt 

F2 " I J gl(t'tl)El(t't2)YsS(tl't2)dtl'it2 
O / o 

Regardless of the functions gQ and g^, Fq and Fg will "both he positive. 

This is the case since they are the ensemble averages of the square of a 

real quantity. For example, Fg is the ensemble average 

(r j 81(t't1)s(t1)dt1]2̂ ) 

/ o 

The desired condition for Tti'ninnnri error is that Fq + aF^ + a^Fg he a 

minimum when a is zero. This means that it is a wtm'Tmrw -when the weight­

ing function is gQ. The error is a minimum if e""(t)) = 0 and 

d2 

? 

= 0 

^e2(t)^> > 0, for any arbitrary g^(t,t^). The derivative ~^e2(t^ 

is zero if F^ is zero for any physically realizable g^. Fg is positive 

for the reasons discussed above. Consider the form of F^ 

Zt 

2 

Jo 
g;L(t,tg)[ / h(t,t1hns(t1,tg)dt1 -j S0(t,t1)Yss(t1,t2)dt1]d 

In order for this integral to be zero for any arbitrary g^(t,tg), the ex­

pression inside the brackets must be zero for any tg between the limits 

of integration. This yields the integral equation 
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t 

1 nsv 1' 2 6o(t'tl)Yss(tl't2)âtl l"ssx l' 2 

•which most he satisfied for 0 < tg < t. This completes the solution of 

the problem for the case where the statistical data concerning the rela­

tive magnitudes of the noise and the signal are all known. 

In some cases a different version of this problem is encountered. 

This is the case where the signal s(t) may contain some components of 

known form and unknown magnitude. It is desired to have the output be a 

desired linear functional on the input for the case where the random com­

ponents of signal and noise are zero, and to have the mean square error 

be a minimum in the presence of signal and noise. The errorless behavior 

in the absence of the random components can be expressed by the constrain­

ing equation 

where f(t) is the known input signal, and fQ(t) is the desired output in 

the absence of noise. The condition for minimum error in the presence of 

the random components remains the same as before. This problem may be 

solved using the method of Lagrangian multipliers. The Lagrangian may be 

written 
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where X(t) is the Lagrangian multiplier. The condition that ̂ -^e2(t)^ 

he zero is represented "by the equation 

gl(t>t2)C j / «ô Âŝ 'V**! 

equation 

- X(t)f(t2)]dt2 

Since this must he zero for any arbitrary g^, it means that the integral 

b(t'*ihns(\'V*ï - I )at 

- x(t)f(t2)dt2 = 0 

must be satisfied. Once the solution to this equation is determined it 

must be substituted back into the constraining equation to determine X(t). 

The functions gQQ and are defined by the integral equations 

goo(t'tl)Yss(tVt2)atl * f h(t'tl'Yns(tl't2)âtl 
<0 Jo 

t 

Eol<t'tl>Yss(Vt2)dtl = f<V 

If the value gQ = g^ + X(t)gQ̂  is substituted into the integral equation 

for gQ it may be seen that this value is a solution for amy X(t). The op­

timum gQ(t,t^) is then determined by finding the necessary value of X(t) 

by substituting back into the constraining equation. 

If all the statistical data concerning the inputs is known, then the 
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first method will give least error. However, if the relative magnitudes 

of signal and noise are not known, then the second method must be used. 

In some cases, the second method yields somewhat easier analytical solu­

tions . 
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