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INTRODUCTION

Statement of the Problem

This thesis describes the optimization of a combined inertial-celes-
tial navigation system. Throughout the thesis the following assumptions
will be mede: (1) that it is desired to minimize the mean square position
error, (2) that the system is linear and perturbed by additive noise, (3)
that the system is & locally level system, and (4) that the system operates
at low velocities at a known distance from the center of the earth. Since
the general solution to this problem is quite difficult seversl simpler
versions of the problem will be analyzed. These may be solved by reason-
ebly well-known techniques and the results are useful both from an intui-
tive standpoint and as practically useful methods of nearly optimizing a
systenm. The three cases to be analyzed are: an inertial system with one
channel, combined with a celestial body tracker; a two-channel system op-
erating with a tracker with negligible platform tilt; and the more general
cagse of & system with a tracker where platform inclination is not neglig-
ible. In all cases the results are applicable to a damped inertial system
as well as a pure inertial system. The last-mentioned case is the most
difficult to optimize. Before proceeding with the analysis it will be de-

sirable to outline the basic principles involved in inertial and celestial

navigation.
Inertial Navigation

Basic concepts
An inertial navigation system is one which measures its own



acceleration and thus calculates its own position in space. It has three
essential components, a vector accelerometer, a stable platform, and é,
computer. The vector accelsrometer is an instrument which measures ac-
celeration in space. It does this by measuring the force on a test mass.
If the mass is known, the total acceleration of the wvehicle may be cal-
culated using Newton's laws. The steble platform carries the vector ac-.
celerometer in a known attitude in space so that a.cceiéra*t‘;ion relative to
known spatial coordinates. The computer calculates veﬁicle acceleration
from the acceleration sensed by the accelerometer by adding the value of
gravity, which is computed on the basis of the estimated position of the
system. It supplies the torquing signals needed to keej: the steble plat-
form in the desired attitude in space. It in‘l;,egrates vehicle acceleratibn
to obtain the system's velocity and position.

The accelerometer measures the force on a test mass. Thus, it senses
vehicle acceleration plus gravity. If A is the thrust acceleration %!‘; »
g the gravity vector, and R the vehicle position vector, then :1; =g +A. '
g is a function of position and thus must be calculated using positién
information from the system. In inertial navigation systems in general,
this is a crucial problem. However, in locally level systems, gravity is
nearly constant relative to the platform exes and thus this computation is
not a major source of error. The gravity feedback in the locally level
system is basically a function of platform inclination.

The stable plafform is kept in a known orientation by gyroscopes. A

gyroscope is a rotating maess with & known angular momentum. If the



gyroscope is left undisturbed its angular momentum will remain constant
and thus its axis of rotation will maintain a fixed attitude in space. A
toz;que applied sbout an axis perpendicular to the axis of rotation of the
gyro will cause precession, or rotation of the axis of rotation. Pre-
cession is described by the equation T = H x w, where T is the external
torque applied to the gyro, w is the precession angular velocity of the
gyro, and H is the angular mouentum. In many cases, including the local-
1y level system discussed here, it is desired to rotate the platform with
respect to inertial space. This is done by applying known torques to the
gyro. The torque to be applied is a function of the velocity and the
position of the system.

The computer performs the integration of vehicle acceleration,. the
computation o.f the gravity vector, and the computé.tion of the gyro |
torquing signals. For the purposes of this thesis it will be comnsidered
to be errorless.

It might be suspected from this discussion that errors in the in-
struments of an inertial system would tend to. cause ever~-increasing po.Si-‘ .
tion errors. For this reason it is d.esira'ble,v especially in cruise
systems, to compare the position determined by the inertial system with

some other position reference.

Locally level systems

A locelly level system is one which is designed so that the platform
is kept level at the computed position of the system. Consequertly, the
desired angular velocity of the platform is a function of the position of

the system. This angular velocity is w = o + ge where ® is the angular



velocify required for the platform to remein locally level, and ®, is the
angular velocity of the earth. The coordinate system used in this thesis
is shown in Figure 1. In terms of this coordinate system the angular ve-
locity o is
' X9, [-Ltemdy
L 0-L1+1 B+ [- L2
o o] o}

In a locally level system, the z-axis of the accelerometer is usually not
mechanized, since this information is aveilsble otherwise in surface

systems. A block diagram of a locally level system is shown in Figure 2.

Error anall{s_is

As has been implied before, the errors in inertial navigation systems

tend to propegate throughout the system and to increase with time. The
instruments used in iner‘tiai ‘navigation are imperfect, and the degree of
accuracy demanded of the systems demands that the instruments be operated
to the limits of their.pérforme.nce. Consequently, careful error analyses
are very important in the design of an inertﬂ ngvigation system. The
errors in inertial navigation systems are of two basic types, instrument
errdrs and alignment errors. Instrument errors arise from mechanical de-
fecfs in the instruments and aligmment errors are a result either of im-
proper initial aligmment of the system or of subsequent misalignment.
There are two major types of alignment error in the locally level
system. One arises from platform tilt appearing in the output of the ac-
celerometer and the other arises from velocity error being fed back via
the torquing signals into the gyro. Since the gyro angular velocity is a

function of the velocity of the system, if an error exists in the
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Figure 2. Locally level system block diagram.
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velocity determined by the system, then the error will appear in the gyro
torquing signal and thus in the platform tilt. This effect may be shown

by considering the gyro angular velocity w. The desired angular velocity

is

[-L-7+1 [ %

(o} K4 o

w + 1
- =

and the actual anguler velocity is

Tl x + bx
Qe-r}_x[ R, ]+-J-'yt+ 3 J+e .

The difference is

RFNEE SRFRE SAT
vhere § is the platform tilt angle vector, and ¢ is the gyro bias. If the
accelerometer is tilted through the angle § from the vertical, its output
isA-Ax Q + 6a where b0a is the accelerometer error. The difference be-
tween the accelerometer output and the actual thrust acceleration A is

then given by

e+l laf -efl+21 [ef -2f]

assuming the output along the z axis of the accelerometer is disregarded.
If the higher order products are neglected as being small, then the eac-

celerometer error output is

AR = 1 (b2 - g¢y] *1 [Gay +ef ] .

The error outputs of each accelerometer are then A_.JE.= Ga.x - g¢y for the



x-axis accelerometer, and Air' Ga + g¢ for the y-a.xis accelerometer. The

error output equations for the gyros ere ¢ = - by +e_and ¢y = %x_ te.
to o

These error output relations for the instruments may now be combined

to produce the error model for the locally level system shown in Figure 3.

Damped inertial systems

If the pure inertial system discussed previously is modified by

‘ a.dding an independent velocity measuring device whose output is fed back
into the accelerometer, & demped inertial system results. The 'biock dia-
gram for the damped inertial systém is shown in Figure 4. The output of
the velocity meter is _13 + 8v wﬁe;ce dv is the instrument error of the ve-
locity meter. The difference between the outpu‘l'; of the velocity meter
and the system velocity i%_ + Q is then v - 9_1.3. The error model for the

damped inertial system can then be set as shown in Figure 5.

Error transfer functions and error propagation

Starting from the error models of Figures 3 and 5, the error transfer
functions sﬁown in Teble 1 can be derived. If the velocity meter constant
k is set to zero in the damped system, the undemped inertial system trans-
fer functions are obtaired directly. If a constant error is input at each
of the error inputs. Sa.x, 6vx, and ey, the output errors shown in Table 2
are obtained. A new output error Vy is defined here as ¢y - %5 . The
only error input which causes an unbounded position error is ey(,) It may
be seen that the error inputs from the accelerometer and the velocity
meter can be lumped into one error input Sax + k6vx. The error model for

the damped inertiel system can be modified to take the form shown in
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Teble 1. Error transfer functions for a damped inertial system

Error output : Error input
8a §v. €
X X s

A B kR, -8R,

X Ros(s +k)+g Ros(s +k) +g s[Ros(s + k) +gl
¢ 1 k RO(S * k)

Yy Ros(s +k)+g Ros(s +k)+g Ros(s +k)+g

/4 1

Yy 0 0 =

Figure 6. This form will prove to be extremely useful in the a.nalysis to

] = E—- .—_-.L ! - - 2
follow. The substitutions @ .;)Ro N f el andw =w 71 ;

have been made in computing Table 2.

Relative seriousness of errors

It may be seen from Tebles 1 and 2 that the only input error which
causes an unbounded error is the gyro bias. For this reason, in cruise
systems, the most critical components are the gyros. It is obviously very
desirable to have some method of correcting this error. This is the
purpose of combined inertiel-celestial systems such as those discussed in
this thesis. If & celestial body tracker is installed on a steble plat-
form it measures the system error _‘K . 'The use of this information to
correct the effects of gyro bias would eliminate the errors which would

increase in an unbounded fashion.



Teble 2. Time domain form of error outputs for constant errcr inmputs
Error
output Error input Time domain form
oa_+kOv -;mot R 1 .
A ba_ + kbv X _Z[1-¢ (cosw t + =sin © t)]
X X X 2
w w
o
-fw t
-ge o . -fw t ;
e Y|t sinw t—2—(l-e o(cosmt
Y 2 w
® o o
o]
1 t
+ = sinw t)]
w
ba_+kdv -fw t . .
[} Sa_ + kév X __ZT1-e © (coswt + }'r sinw t)]
Y x 2
Rw [0}
0
2w t
e ; ° L2 [0t !
€ e |=—T—sim t + = [1-e (cosw t
¥ Yy ® @
1
. + l—, sinn t)]
w
V ba + kév 0
y p'd x
€ e t
y y

Celestial Navigation

Celestial navigation is the process of navigation by making and in-

terpreting observations on the positions of celestial bodies. In many

cases, including both this system and the case of marine navigation with
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the sextant, the only useful observation is the altitude of the body in
question. This observation establishes a circle of position on the
earth's surface. To obtain a position fix, two observations are required.
These may be obtained from the same body at two different times, or from
two different bodies. This thesis will treat the case of repeated o‘:;ser-
vations on the same body.

If a celestial body tracker is mounted on a stesble platform, the ob-
servation may be used to sense the component of the difference between
platform tilt and position error which is normel to the line of sight.
This is shown in Figure 7. Figure 7 shows a cut taken through the. center
of the earth and including the observer and the line of sight to the ce-
lestial body. Providing the platform tilt is small the tracker output is
% cos z(t) -K sin z(t) + n(t), where n(t) is the additive tracker noise
and z(t) is the azimuth of the celestial body. Throughout this thesis it
has béen assumed that only the altitude information is to be used. The
reason for doing this is that the azimuth information must be used to
correct the platform misalignment about the z' axis, which is quite large
with respect to the platform tilt ebout the x and y axes. This informa-
tion mey then be used to correct the position information provided by the
inertial system. If the tracker were a perfect instrument there would be
fewer problems associated with this correction. However, there are sev-
eral sources of error in this measurement. Atmospheric refraction is a
major problem with either optical or radiometric trackers. If an optical
tracker is used weather becomes a factor. If a radiometric tracker is

used resolution troubles will be encountered with either the antenna or
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the random. In any case the problem of optimizing the use of the tracker

data is not a trivial one.
Review of the Literature

The topric of this investigation was suggested by work done on a sys-
tem for the Collins Radio Company by R. G. Brownl. No optimization of
note was done in this work. Optimization of stellar inertial systems has
been done in several different cases, ahd a brief discussion is contained
in Pitmen (5). The optimization of velocity-inertial systems has been dis-
cussed by Porter and Kazde (6). However, their work mekes no mention
either of celestial systems or of non-time-stationary cases. An earlier
paper by Johnson (3) discusses the systhesis of various inertial system
configurations. Any search of the literature in this field is complicated
by the fact that inertial navigation systems have been used almost exclu-
sively in military applications. For this reason the bulk of the work
done in this field is not available to the general public. The most use-
ful work from & general informetion standpoint has been Pitman (5),
which is an excellent source of infomﬁtion on the workings of inertial
navigation systems. Most of the material in this chapter on the funda-
mentals of inertial navigation has been adapted from this sowce. The
works of Lening and Battin (4) and Chang (2) have been very helpful in

dealing with non-time stationary filtering and optimization techniques.

lBrown, R. G., Ames, Jowa. Proposal for an Integrated Radiometric-
inertisl Autonavigator. Private Communication. 1962.
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THE ONE-CHANNEL INERTIAL-CELESTRIAL SYSTEM

Description of the Problem

In this chepter a system consisting of one channel of an inertial
system and a tracker with additive noise will be considered. The error

block diagram of this grstem is shown in Figure 8. The tracker output is

f ey(t)d‘t + n(t) = ;ﬂy(t) + n(t).

It may be noted that the tracker output is independent of both the ac~
celerometer error éax and the velocity meter noise va. Consequently,

the choice of the optimm feedback function g(t, tl) depends only on the
gyro bias c-:y once the velocity meter feedback constant k is chosen. This
means that a mch simpler system may be considered. This system appears
in Figure 9. All further _disc_ussion will be based on this configuration.
There are several reasons for choosing to 'opera.te on ‘l/y rather than ey
as an input. It is not necessary to gather data on the autocorrelation
function of the derivative of the tracker noise, and the initial condition

problem can be handled in & more convenient manner.

Optimization of the One-Channel System

If the statistical properties of the input Vy and the noise n(t) are

completely known, Ax 4

% t
bx, = n(tl)f(t-tl)dtl -] &t Vy(tl) + n(t;)lat, .
(o} 0

» the component of position error due to gyro bias is

This equation is valid for the case where f”y (t) has deterministic and
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Figure 9. System simplification
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random components with completely known statistical properties. The case
where the signals consist of random components and deterministic compo-
nents of unspecified mesgnitude will be discussed in a subsequent section.
The position error Ax mey be minimized by choosing the appropriate
weighting function g(t,ti). The procedure for finding this optimm weight-
ing function is due to Booton (1). It is covered in some detail in the
appendix. The integral equation for this optimum weighting function is

t t

Ys i( tl,ta)g(t, tl)dtl = Yni(tl, t2)f( 1:-1—.1)%l 0<t <t
(o} (o]

where the correlation functions ¥, i(tl,ta) and Yni(tl,t2) are defined by

¥14(t15tp) =<[n(t1) Y. y{1)n(t,) +{/y(t2)'.p

Vg (tystp) =t )aty) +# (8,31

This integral equation must be solved for each value of time t. No gen-
eral solution for this type of integral equation is known. Consequently,
deriving either a solution or a lcswer bound for the error is 'extremely
difficult.

By meking some assumptions as to the nature of the signal% (t) the
integral equation for the optimum weighting function may be put in a some-
what more intelligible form. These assumptions are: (1) n(t) is time

stationary and has the autocorrelation function Ae.b! T[

s (2) &y is the -

sum of a consta:latl € X and a random component eyr with an autocorrelation
-b_|T]

function Aye ", and (3) the noise, the random component of the gyro
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bias and the constant portion of the gyro bias are all uncorrelated. The

function % (t) is

AOR

e ()2t + ¢ (-t ) +Vy (t,)

(o]
where to is the time tracking ceased on the previous dsy and y(’co) is
thus the value of this error at to.

t
The autocorrelation function of eyr(t)dt is given by the integral

(o]
! %2
yn_(tl,t2) = ( eyr(ts)dts eyr(t 4)dt4>
g tg
/ / < yr(t )e P atdt, .

This integral has the value

1 bt bty bty b [tl-tzl
. [by(tl+t2-2to) + by Itl-tel -1 +e ¥ e +e 1-e ]

' ¥
The autocorrelation function for ;ﬂy(t) is given below

<,(// Y %%» =</Wy2(“°o> i (ACHL 19 (ty+6,-26 ) +6yk2>

-t )(Jc2 to)
bte bty yta b }tl-tzl
+ Ay[’by(tld» o2t )+b Jt -tel +e °[e 1ie J-e .

The assumption has been made here that some "best value" of position has

been set into the system before it reverts to the damped inertial mode



at the end of the previous dsy's tracking.

The integral equation for the optimum welghting function has the form

t - -
/2[ Y (o)) e ik tef]3(’“’%.)‘1“1
o

’ 'b‘tl'tal
= Ae g(t-tl)d.tl , 0<t_<t

2

The "Errorless" Filtering Case

A slightly different approach may be taken to this optimization.
This is the so-called "errorless" filtering method. Basically, the opti-
mum filter desired is one which is errorless for the determihistic sig-
nals in the absence of noise and which has minimum mean square error when
the random sigha.ls end noise are present. This method is described by
Laning and Battin (4) and is covered in the sppendix. If it is desired
that this system be errorless in the gbsence of eyr’ {/y(to) , and n(t),

i.e., with ¢, as the only input, the constraining equation is

vk
t

g(t,tl)[tl - to]dtl =0 .
(o]

The position error Ax dis expressed as before. The optimum weighting func-
tion is the one which minimizes the mean square position error subject to

the constraining equation. If the terms relating to e , are removed from

vk
;ﬂy the integral equation shown below results.
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[

t
) [ 20y + v (tyot) + 2] B0 Tg(t, 6 et
o)

’ 'blta'tll
= Ae f(t-tl)dtl 0<t, <t

Because the optimum weighting function gives zero position error for a
constant gyro bias it also satisfies this equation. If go(t,tl) is de-
fined as the solution to this equation and gl(t,tl) is defined by

€ ot -tal

gl(t"t].) [<¢y2(to)> + Yrr(tl’ t2) + Ae ' ]dtl= t -to

2
o

then g(t,tl) is defined as go(t,tl) + l(t)gl(t,tl) where A(t) is a
Lagrangian multiplier, the optimum weighting function is found by find-
ing 8 and 8y and then substituting the resulting g(t,tl) into the con-
straining equation to find A(t).

Probably the only analytically solvable case associated with this
problem results from a further simplification. If eyr and Wy(to) are

neglected, the integral equations for the errorless problem take the

forms
€ -b[t,-t ’ ¢ bt -ty
g (t,t.) ae ' T 2lat = ae L @lp(t-t )at, o<t <t
ov ety 1 ! /4% O<ty
0 (o]
K -b] tl-tel
gl(t,tl) Ae dt) = t, - t 0<t <t

0

These equations are of the general form



b
u(t,) #(t - t)ar = £(t) .

a
This equation is the integral equation for the time independent case with
a finite observation time. When ¢(T) has a Laplace transform which is a
ratio of polynomials in 52 this equation has an exact solution. This
exact solution is described by Laning and Battin (4). The exact solution
for these particular equation; is. relatively simple. The function g, is
f(t - tl) by inspection. The function g, has an analyticai form which is
given by Chang (2), for the equation

t -b

Ae

t2-t

Jj g(t + tl)dtl = f(t2)

In the neighborhood of zero it is given by
1
g(t’tl) = -—28.? (P + b) [U(t - tl)(P + b)f(tl)]

These two solutions are equal in the interior of the interval. The com-

Pplete solution for this case is
L .
g1(t,ty) = 555 [o(t-ty-t ) + (1#0)(t-t,)8(t,)-(1+bt )5(t~t,)]

The constraint equation is

t t

(tl-to)f(t-tl)dtl + A(t) (tl-to)gl(t,tl)dtl =0
o} o

and the Lagrangian multiplier can be determined using this equation by
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- (tl-to)f(t-tl)dtl

A(t) =

( tl-to)gl( t) tl)dtl
o}

The optimum weighting function g(t,tl) is then

g(t,t;) = £(t-t,) + A(t)g,(¢,t,)

The weighting function gl(t,tl) is sketched in Figure 10. The delta func-
tions at the end of the observation interval can be interpreted as dis-
crete observations taken at each end of the observation interval and then
added to a weighted average of the remaining data. This is also the sort
of weighting function which can be used reasonably easily in a computer

mechanization of the system.
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Figure 10. Sdmple weighting function g(t,t)
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THE OPTIMIZATION OF A TWO-CHANNEL SYSTEM

Description of the Problem

This chapter treats a two~channel inertial navigation system aided by
a tracker which tracks one celestial body. The tracker output is thus Te-
lated to the errors Ax(1 and Ayd. In fect it is the component of 5/ normal
to the direction of the; body being tracked. If the azim.th of the ody,
z(t), remained constant i would never be possible to determine what portion
of the filtered error came from each channel. Fortunately, the azimuth of
a celestial body changes as the earth rotates. As a result it is possible
to filter the output of the tracker tc obtain anl approximation to the er-
rors Axd and Ayd. The block diagram of the system to be considered is
shown in Figure ll. As in the one-channel system, the only error input
which appears in the tracker output is the gyro bias error. Consequently,
the sin-@plified. block diesgram of Figure 12 will be used in the subseguent
analysis. A further simplification which can bg made in many cases is
that the platform tilt is very small, and thus the problem is reduced to
minimizing the outputs Axd and Ay a° The simplified block diagram for

this case is shown in Figure 13.

Analysis of the System with Negligible Platform Tilt

If the block diagram of Figure 13 is used as a starting point, the

output errors Axd and Ayd can be expressed as follows.
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t
by =Pry(e) - | Pyitedeos atee (st )an,
0

t

t
+ / ¢ xl(tl)sin z(tl)gl(t,tl)dtl - n(tl)gl(t,tl)dtl
o (o]

t
by, = xl(t) -/ }/xl(tl)sin z(tl)g2(t,tl)dtl
o

t t
+ V yl(‘tl)cos z(tl)ga(t,tl)dtl - n(tl)ge(t,tl)dtl

o} o}

From these relationships it is possible to derive the integral equations
for the optimum weighting functions. If s(t), the output of the tracker,

is defined by

5(8) =r,(8) cos 2(2) - fa () sim =(8) + n(t)
and the correletion functions are defined as

Yog(tyotp) =(s(t)s(t,) >

voo(trt,) = By (91s(5,) )

Vs (o) = Py (0)s(t,) )

then the integral equations for the optimum weighting functions 8y and 8,

axre
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sz(t,tg) Yss(tl,te)gl(t,tl)dtl 0<t, <t

Yxs( t, tZ) ' Yss(tl’ t2)82( t, tl)dtl

As in the preceding chapter these equations must be solved for each value
of time t. This is true here even for the case of stationary noise.
Probably the most reasonsble assumption as to the nature of the gyro bias
is that the x and y gyro biases are independent constants. If this

assumption is made, then Wyl and %xl have the form
% y1(t)

le(t)

ey(t-to) + Axd(to) ‘

ex(t-to) + Ay d(to)

where to is the time tracking ceased the previous day. In this case the

correlation functions reduce to the forms shown below.
v, (%,t,) {%l(tl) Fy,(£,)) cos 2(t,)eos 2(t,)
+<f/x1(tl){/xl(t2)> sin z(t )sin 2(t,)
Vol 1) =(Pry(iy(e)) eos o)

veolts 1) = (Vo) Fry(t) sin a(ty)

Here, the noise and the gyro bias are assumed to be independent.

The integral equations shown sbove ere valid only when the statisti-

cal behavior of the noise and the error inputs are completely known. For
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Figure 11. Two-channel inertial system with tracker
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some cases this is not a reasonable assumption. In this case the "error-
less" filtering technique discussed in the previous chapter may be used.
In this case, with the same assumptions as to the nature of the inputs as
were mede before, the desired weighting functions are the ones which are
errorless for constent gyro biases and zero position error at the end of
the previous day's tracking. Then the error with noise and error at the
end of the previous dsy is to be made a minimum. This gives two con-
straining equations on each weighting function. These equations are

t
(t -t )cos z(tl)gl(t,tl)dtl =t -t

(t -t )sin z(t )gl(t t )dt =0

/ (tl to)sin z(t )ga(t,t )dt =t-t

(t -t )cos z(tl)ga(t tl)dt =0

The equations for the minimum weighting functions are

t

Yss(tl,ta)gl(t,tl)dtl 0<t, <t

sz(t)ta)

t

Yxs(t: tz)
o]

subject to the equations of constraint above.
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2 — flt-t) t) L%
Y
cos Z l g,(t,t:)
n(ﬂf? .
' sin Z gft.t)
+
%I | o f(t-t,) - Ayd’

Figure 12. Simplified block diagram
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These equations are solved using the method of Lagrangien multipliers.
A discussion of this method msy be found in Chang (2). The optimum

weighting functions g,(t,t,) and g. are assumed to be of the form
1 1 2

g,(tst;) = gyo(tty) + 2 ,(2)ey;(%,8) + A (t)ey5(t5%;)

gx(t:t)) = 8xft,t,) * Aoy(t) Eay(tyty) * Apft)8sp (t,t))

vhere glo(t,tl) s gll(t,tl) and gla(t,tl) are the solutions of the integral
equations shown below and )‘ll and 112 are Legrangisn multipliers.

t

t
Yss(tl,tz) gll(t,tl)dtl = (tz-to)cos z(t2)

Yos(t1r2)800( %)) = ¥, (85%))

Yss(tl,tz)gle(t,tl)dtl = (te-to)sin z(te)
o
Once the solutions for these integral equations are found, the weighting
function formed from them can be substituted back into the constraining
equations to find the Lagrangian multipliers and thus the desired
weighting function. If, as in the precedﬁg chapter, it is assumed that
the random component of the gyro bias is zero, the error { (to) is neglig-
b T

ible, and the noise has the autocorrelation function Ae { , then the
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integral equations for the partial weighting functions are as shown below.

t :blte-tl] t -b{ta-tJ
0= g o{tst)ae at, = 8o tsty e at,
o o )

[ 'blta‘tl[
(ta-to)cos z(ta) = Ae gll(t, tl)dtl

[e)

t -b\tz-t :

(ta-to)81n z(te) = Ae gel(t,tl)dtl

817 "8 By T &)

819 and 8y &Te zero by inspection. 811> 8100 8572 and 8op MEY be ob-
tained by the same methods used previously. These functions do not need
to be calculated for each value of time. However, they are different for
each function z(t). Once these functions are found, they must be substi-
tuted back into the constraining equations to fiﬁd the Legrangien multi-
Pliers. This substitution will give two sets of equations in the multi-

Pliers. These are shown below.

t
Iy = (tl-to)gll(t,tl)cos z(tl)dtl
(o)
t
I = (tl-to)gle(t,tl)sin z(tl)d.tl
[o]
t
I, = (tl-to)gle(t,tl)cos z(tl)dtl
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t
Iy = (tl-to)gll(t,tl)sin z(tl)dtl

t-t°=l + AT

1ty * A0

0 =A.1I

11 ) S

21 * Molon

bty = Aoy Top + ATy

AT

0 =AyTy; *AT,

21
It may be seen that even for this simplified case the solution of the
optimization equations is very difficult.

The System with Apprecisble Platform Tilt

The block disgram for the system with non-negligible platform tilt

appears in Figure 12. The position errors Ayd and Ayd for this system

are

t t
Ax, = %yl(tl)f(t-tl)dtl - }/yl(t)cos' z(tl)gl(t,tl)dtl
e} (o]

t t
+/ //xl(tl)sin z(tl)gl(t,tl)dtl - n(tl)gl(t,tl)dtl
(o)

(o}
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Figure 3. System with negligible platform tiit
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t t
Aya = :///.qul(tl)f(t-tl)dtl + gﬂxl(tl)sin z(tl)gl(t,tl)dtl
0 (o]

t

t
+’///'90yi(t)cos z(tl)gl(t,tl)dtl - n(tl)gl(t,tl)dtl
(o]

(o)

In a masnner analogous to that used in the preceding section, the integral
equations for the optimm weighting function are

t t

YSS(tl’te)gl(t,tl)dtl

f(t-tl)yys(tl,ta)dtl

t t
YSS(tl,tz)ga(t’tl)dtl
(o} o)

f(t-tl)yxs(tl,ta)dtl

These equations are valid when the statistical behavior of the inputs and
noise are completely known. The technique for their solution is very sim-
ilar to that which must be used for the equations of the prévious section.
As was true with the case of negligible platform tilt, these eciuations
must be solved for‘each value of time t. If the "errorless" filtering

method is used, the equations of constraint become ‘

t t
(tl-to)cos z(tl)gl(t,tl)dtl e f(t-tl)(tl—to)dtl
(o] (o]
t
(tl-to)sin z(tl)gl(t,tl)dtl =0
(o]
t
=0

(tl-to)cos z(tl)ga(t,tl)dtl =
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t t

(tl-to)sip z(tl)ga(t,tl)dtl = f(t-tl)(tl-to)dtl
0 (o]

The integral equations for the optimum filters which must be solved sub-
Ject to these constrants are the same as those above, with the exception
that the terms relating to eyk are removed from the correlation func-
tions. If the partial weighting functions are now defined by the inte-

gral equeations

t
Yss(tl,te)gll(t,tl)dtl = (ta-to)cos z(te)
o .

YSS(tl,ta)glz(t,tl)dtl = (.ta-'.to)sj'n z(tz)

€11 T & €>1 < &p

~ the optimum ﬁeighting functions may agasin be expressed as
gl(t’tl) = )‘logl()(t’tl) + )‘llgll(t’tl) + )‘lzgle(t,tl)

The right sides of the integral equations for the partial weighting
functions are known functions of t. Except for the equations for the par-
tial weighting functions 810 and 8592 there is no difference between the
integral equa.tions for this case and the case with negligible platform
error. The constraining equations are different, however, and thus the

weighting functions will also be different. If the same assumptions are
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made about the noise and the gyro bias as were made in the preceding sec-
fion, the weighting functions 810 and 85 8re zero and thus the only
change to be made in considering the effects of platform tilt is to change
the constraining equations used when determining the Lagrangian mmiti-
pliers. This means that the effects of verying the velocity meter con-
stant k are much easier to assess, since they appear oniy in the

Legrangian multipliers.

Closed-Loop System Configurations

It may not seem at all obvious that the system configuration shown in
Figure 14 can ever be reduced to the form used as a general form for the
optimization. The form shown in Figure 14 uses direct feedback to the gy-
ro bias input; and it has four weighting functions involved instead of-
the two of the system of Figure 13. However, it can be done, and the fact
that it can be done validates a considerable portion of this analysis.
Consider the configurations shown in.Figure 15. If the closed-loop re-
sponse to a unit impulse uo(t-tl) is known to be g(t,tl) then the integral
equation

T
8(t-tl) = g(t,tl) + g(t,ta)q(ta,tl)dta
Y
can be used to find the feedback weighting function q(t,tl). Conversely,
if q is known, the same integral equation can be used to find the closed-
loop response g(t, tl) . The significa.ﬁce of this integral equation is that
if q(t,tl) represents a physically realizable weighting function then

g(t,tl) does also and vice-versa. Thus it is possible to solve for the
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closed-~loop optimization function and know that this represents the true
optimization function and that it is not possible to improve matters by
using a more complicated system configuration. Now consider the config-
uration of Figure 16. This is merely a revision of Figure 14. However,
it is now much more apparent that this configuration will not accomplish
any more than the configurations previously studied. ‘The integral e-
‘quations necessary to describe the feedback transfer functions may be 4if-
ficult to solve, but particularly with digital techniques, the mechaniza-
tion using the closed loop weighting functions mey be entirely satisfac-
tory. Further, it provides a direct method for computing the mean square
velue of the position error and so may be used as a standard of compari-
son for existing or proposed practical systems. The weighting function
U(t,tl) of Figure 16(c) is defined by the integral equation

t

Ub(t-tl) = m(t,tl) + nKt,tl)[gs(t,te)cos z(ta)
(o]

-g4(t,t2)sin z(tz)]dtz

and the total weighting functions composed of m, 8z» and gl, and their

counterparts m, 85 and g , 8re
t

g (t,%)) m(t,,t Mg (+,t,) + g, (t,t,)]at,

O
t

g (t,t)) = m(t,, t, ) ey(t,t,) + g,(t,t,)]d,
o

for the Axd side and the Ay a side respectively.
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CONCLUSIONS

This thesis describes methods of optimizing a combined celestial-
inertial navigation system using the altitude information from a celestial
body tracker. The integral equations for the optimum weighting functions
are derived for severé.l cases. In any case where the noise or the random
component of the gyro bias is unknown, no closed form solution is known
for the weighting functions, and in addition the integral equations for
the weighting functions must be solved for each value of time. This means
that any solution for these cases must be extremely difficult. It has not
been possible to esteblish even a tentative error bound for any of these
cases. When the gyro bias is assumed to be constant, and the noise is
assumed to have a simple autocorrelation function, then the problem has a
somewhat simpler solution. In this case, the integral equations for the
partial weighting functions have an analytical solution in which the time
appears. These partial weighting functions can then be substituted back
into the original equations of constraint in order to detérmine the com-
plete weighting function. The resulting weighting functions can then be
used to determine the mean square value of the position error. However,
for the two-channel system such a calculation would be extremely difficult.

Two different optimization criteria have been used in deriving the op-
timm weighting functions. Basically, these both result in minimum mean
square error, but under different assumptions with regerd to the nature of
the inputs. In the first, the statistical behavior of the signal and
noise are gssumed to be completely known. Then the appropriate ensenmble

averages of all the necessary functions can be determined and the equations



for the minimization set up. In the second, the system is forced to be
errorless when the noise and random compcnents are not present. The error
in the presence of the random components and noise is minimized in the.
mean square sense by the choice of the optimum weighting function from a-
mong those satisfying the constraining equations which specify that the
system is errorless for the deterministic inputs.

In the practical design of a system, the choice between these methods
of filtering appears to depend on a rather intimate knowledge of the prop-
erties of the gyros. In general, the most devastating form of gyro error
would be random components of ey and e, Constant drifts would be rela-
tively easily compensated for, provided the tracker noise is not extremely
high. The worst situation appears to be the combination of large amounts
of tracker noise and large amounts of random gyro bias.

Several simplified approaches appear to be useful for this system.
One appears to be to assume & simplified form for sin z and cos z and solve
for these weighting functions. The result would probably be useful in the
design of a practical system. Another approach, and probsbly the only one
which would be of much help if the case of ncn-stationary noise is to be
considered is to reduce the integral equations to sets of linear equations
by assuming a weighting matrix rather than a weighting function of two var-
iables.

In short, this thesis sets up the equations for the optimum weighting
functions. It does not attempt to solve them for cases complex enough to

be of practical interest.
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APPENDIX A

The Non-Time-Stationary Optimum Filtering Problem

The non-time-stationary filtering problem was first solved by Booton
(1). The modification of this problem which takes into account thé prob-
lem of .opti.nmm filtering with constraints is discussed by La.ning and
Battin (4). Basically the problem is the optimum filtering of a signal
and noise in additive combination so that the error, or difference between
the output of an optimum filter and the desired signal, is to be made a
minimum in the mean-square sense. The noise and signal are assumed to be
random, and the necessary data regarding their statistical behavior is
assumed to be known. The case considered here is slightly different in
superficial appearance from the more usuel configuration, however it is
more convenient for the purposes of this thesis.

Consider the system shown in the block diagram of Figure 17. It is
desired to find the optimum physically realizable weighting function
go(t,tl) such that the ensemble average of the square of e(t) is to be
made 2 minimm. The error can be written

t , t
e(t) = h(t,tl)n(tl)dtl - g(t,tl)s(t,tl)dtl
(o] (o]

and its mean square wveaelue can be written
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Figure 17. System configuration
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t [t
h(t,tl)h(t,tz)ym(tl,ta)dtldta
/ / h(t,t )g(t t )y (tl,t )dt dt
t [t
g(t,tl)g(t,ta)vss(tl,tz)dt dt,
(o] (o)

where the correlation functions Ynn’ Y ns’ and Y sg 2T€ given by

+

Yoty =( (e )aly) )
Y (65,0 = (nlt))s(t,) )
YSS(tl, ta) = <S(tl)5(t2)>

Any physically realizable weighting function can be written in the form
g(t,tl) = go(t,tl) + agl(t,tl) vhere gl(t,tl) is a physically realizable
weighting function whose form depends on g, a, and the specified g(t,tl).
When this substitution is made < e2(t» can be expressed in the quadratic

formF +a.F' +a.2F whereF F,andFaareasshown‘below.

[ / h(t,t )h(t t )y (tl,t )d.tldt2
f / h(t,tl)s (t,t N (tl,’cg)dt dt,
/ / &y (t, l)g (t,t )Y (tl:ta)dt dt
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t [t
=2 / / h(t,t, )e, (£, t,)Y, (t),t,)at,dt,
/ / g (tsty)e, (tst)y (5t )at, at,
t /[t
= g, (t,t,)g) (£, 80y, (t),t,)at dt,
o o ’

Regardless of the functions go and gl, Fo and F2 will both be positive.

This is the case since they are the ensemble averages of the square of a

reel quantity. For example, F2 is the ensemble average

t
<£ / (et )ae 12)
o

The desired condition for minimm error is that Fo + a.Fl + aaFa be &

minimm when a is zero. This means that it is a minimm when the weight-

ing function is g . The error is a minimm if -- e (t)> 0 and

2
-d—é ( ee(t)> > 0, for any arbitrary gl(t,tl). The derivative —< (t)
da

is zero if Fl is zero for any physically realizeble g, F2 is positive

for the reasons discussed above. Consider the form of Fl

t - t t
o (]

(o]

In order for this integral to be zero for any arbitrary gl(t,tz) , the ex-

pression inside the brackets must be zero for any t2 between the limits

of integration. This yields the integral equation
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t

t

o o

which must be satisfied for 0 < t2 < t. This completes the solution of
the problem for the case where the statistical data concerning the rela-
tive megnitudes of the noise and the signal are all k.nown

In some cases a different version of this problem is encountered.
This is the case where the signal s(t) may contain some components of
known form and unknown magnitude. It is desired to have the output be a
desired linear functional on the input for the case where the random com~
ponents of signal and noise are zero, and to have the mean square error
be a minimm in the presence of signal and noise. The errorless behavior
in the gbsence of the random components can be expressed by the constrain-
ing equation

]

t
£(t, )a(t, ’Cl)fltl = £ (t)
0

where £(t) is the known input signal, and fo(t) is the desired output in
the absence of noise. The condition for minimum error in the presence of
the random components remains the same as before. This problem may be

solved using the method of Lagrangian multipliers. The Lagrangian may be

written
t

7 +elF - A(t) £(t,)e (6, )at,] + &7,

-at) L £2(t,)g,(t,t,)dt, - £ (t)]
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where A(t) is the Lagrangien multiplier. The condition that %z(ea(t)>
\

be zero is represented by the equation

t t t
o O (o)

- x(t)f(ta)]d.t2

Since this must be zero for amy arbitrary 8> it means that the integral

equation
t t

h( t, tl)Yns(tl’ ta)dtl = gO( t, tl)YSS( tl’ ta)dtl

- x(t)f(te)d.t2 =0

must be satisfied. Once the solution to this equation is determined it

-
must be substituted back into the constraining equation to determine A(t).
The functions 800 and 8,y &re defined by the integral equations

t t
goo(t) tl)YSS( tl’ tz)dtl

h(t,tl)yns(tl,t2)dtl

t

f(ta)
[¢]

If the value g =g  + l(t)gol is substituted into the integral equation
for g it may be seen that this value is a solution for any A(t). The op-
timum go(t,tl) is then determined by finding the necessary value of A(t)
by substituting back into the constraining equation.

If ell the statistical data concerning the inputs is known, then the
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first method will give least error. However, if the relative megnitudes
of signal and noise are not known, then the second method must be used.
In some cases, the second method yields somewhet easier analytical solu-

tions.
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